The Devil’s Greatest Trick: Ro Khanna’s “Creator Bill of Rights” Is a Political Shield, Not a Charter for Creative Labor

La plus belle des ruses du Diable est de vous persuader qu’il n’existe pas! (“The greatest trick the Devil ever pulled was convincing the world he didn’t exist.”)

Charles Baudelaire, Le Joueur généreux

Ro Khanna’s so‑called “Creator Bill of Rights” is being sold as a long‑overdue charter for fairness in the digital economy—you know, like for gig workers. In reality, it functions as a political shield for Silicon Valley platforms: a non‑binding, influencer‑centric framework built on a false revenue‑share premise that bypasses child labor, unionized creative labor, professional creators, non‑featured artists, and the central ownership and consent crises posed by generative AI. 

Mr. Khanna’s resolution treats transparency as leverage, consent as vibes, and platform monetization as deus ex machina-style natural law of the singularity—while carefully avoiding enforceable rights, labor classification, copyright primacy, artist consent for AI training, work‑for‑hire abuse, and real remedies against AI labs for artists. What flows from his assumptions is not a “bill of rights” for creators, but a narrative framework designed to pacify the influencer economy and legitimize platform power at the exact moment that judges are determining that creative labor is being illegally scraped, displaced, and erased by AI leviathans including some publicly traded companies with trillion-dollar market caps.

The First Omission: Child Labor in the Creator Economy

Rep. Khanna’s newly unveiled “Creator Bill of Rights” has been greeted with the kind of headlines Silicon Valley loves: Congress finally standing up for creators, fairness, and transparency in the digital economy. But the very first thing it doesn’t do should set off alarm bells. The resolution never meaningfully addresses child labor in the creator economy, a sector now infamous for platform-driven exploitation of minors through user generated content, influencer branding, algorithmic visibility contests, and monetized childhood.  (Wikipedia is Exhibit A, Facebook Exhibit B, YouTube Exhibit C and Instagram Exhibit D.)

There is no serious discussion of child worker protections and all that comes with it, often under state laws: working-hour limits, trust accounts, consent frameworks, or the psychological and economic coercion baked into platform monetization systems. For a document that styles itself as a “bill of rights,” that omission alone is disqualifying. But perhaps understandable given AI Viceroy David Sacks’ obsession with blocking enforcement of state laws that “impede” AI.

And it’s not an isolated miss. Once you read Khanna’s framework closely, a pattern emerges. This isn’t a bill of rights for creators. It’s a political shield for platforms that is built on a false economic premise, framed around influencers, silent on professional creative labor, evasive on AI ownership and training consent, and carefully structured to avoid enforceable obligations.

The Foundational Error: Treating Revenue Share as Natural Law that Justifies A Stream Share Threshold

The foundational error appears right at the center of the resolution: its uncritical embrace of the Internet’s coin of the realm: revenue-sharing. Khanna calls for “clear, transparent, and predictable revenue-sharing terms” between platforms and creators. That phrase sounds benign, even progressive. But it quietly locks in the single worst idea anyone ever had for royalty economics: big-pool platform revenue share.  An idea that is being rejected by pretty much everyone except Spotify with its stream share threshold. In case Mr. Khanna didn’t get the memo, artist-centric is the new new thing.

Revenue sharing treats creators as participants in a platform monetization program, not as rights-holders.  You know, “partners.”  Artists don’t get a share of Spotify stock, they get a “revenue share” because they’re “partnering” with Spotify.   If that’s how Spotify treats “partners”….

Under that revenue share model, the platform defines what counts as revenue, what gets excluded, how it’s allocated, which metrics matter, and how the rules change. The platform controls all the data. The platform controls the terms. And the platform retains unilateral power to rewrite the deal. Hey “partner,” that’s not compensation grounded in intellectual property or labor rights. It’s a dodge grounded in platform policy.

We already know how this story ends. Big-pool revenue share regimes hide cross-subsidies, reward algorithm gaming over quality, privilege viral noise over durable cultural work, and collapse bargaining power into opaque market share payments of microscopic proportion. Revenue share deals destroy price signals, hollow out licensing markets, and make creative income volatile and non-forecastable. This is exceptionally awful for songwriters and nobody can tell a songwriter today what that burger on Tuesday will actually bring.

A advertising revenue-share model penalizes artists because they receive only a tiny fraction of the ads served against their own music, while platforms like Google capture roughly half of the total advertising revenue generated across the entire network. Naturally they love it.

Rev shares of advertising revenue are the core economic pathology behind what happened to music, journalism, and digital publishing over the last fifteen years.  As we have seen from Spotify’s stream share threshold, a platform can unilaterally decide to cut off payments at any time for any absurd reason and get away with it.  And Khanna’s resolution doesn’t challenge that logic. It blesses it.

He doesn’t say creators are entitled to enforceable royalties tied to uses of their work at rates set by the artist. He doesn’t say there should be statutory floors, audit rights, underpayment penalties, nondiscrimination rules, or retaliation protections. He doesn’t say platforms should be prohibited from unilaterally redefining the pie. He says let’s make the revenue share more “transparent” and “predictable.” That’s not a power shift. That’s UX optimization for exploitation.

This Is an Influencer Bill, Not a Creator Bill

The second fatal flaw is sociological. Khanna’s resolution is written for the creator economy, not the creative economy.

The “creator” in Khanna’s bill is a YouTuber, a TikToker, a Twitch streamer, a podcast personality, a Substack writer, a platform-native entertainer (but no child labor protection). Those are real jobs, and the people doing them face real precarity. But they are not the same thing as professional creative labor. They are usually not professional musicians, songwriters, composers, journalists, photographers, documentary filmmakers, authors, screenwriters, actors, directors, designers, engineers, visual artists, or session musicians. They are not non-featured performers. They are not investigative reporters. They are not the people whose works are being scraped at industrial scale to train generative AI systems.

Those professional creators are workers who produce durable cultural goods governed by copyright, contract, and licensing markets. They rely on statutory royalties, collective bargaining, residuals, reuse frameworks, audit rights, and enforceable ownership rules. They face synthetic displacement and market destruction from AI systems trained on their work without consent. Khanna’s resolution barely touches any of that. It governs platform participation. It does not govern creative labor.  It’s not that influencers shouldn’t be able to rely on legal protections; it’s that if you’re going to have a bill of rights for creators it should include all creators and very often the needs are different.  Starting with collective bargaining and unions.

The Total Bypass of Unionized Labor

Nowhere is this shortcoming more glaring than in the complete bypass of unionized labor. The framework lives in a parallel universe where SAG-AFTRA, WGA, DGA, IATSE, AFM, Equity, newsroom unions, residuals, new-use provisions, grievance procedures, pension and health funds, minimum rates, credit rules, and collective bargaining simply do not exist. That entire legal architecture is invisible.  And Khanna’s approach could easily roll back the gains on AI protections that unions have made through collective bargaining.

Which means the resolution is not attempting to interface with how creative work actually functions in film, television, music, journalism, or publishing. It is not creative labor policy. It is platform fairness rhetoric.

Invisible Labor: Non-Featured Artists and the People the Platform Model Erases

The same erasure applies to non-featured artists and invisible creative labor. Session musicians, backup singers, supporting actors, dancers, crew, editors, photographers on assignment, sound engineers, cinematographers — these people don’t live inside platform revenue-share dashboards. They are paid through wage scales, reuse payments, residuals, statutory royalty regimes, and collective agreements.

None of that exists in Khanna’s world. His “creator” is an account, not a worker.

AI Without Consent Is Not Accountability

The AI plank in the resolution follows the same pattern of rhetorical ambition and structural emptiness. Khanna gestures at transparency, consent, and accountability for AI and synthetic media. But he never defines what consent actually means.

Consent for training? For style mimicry? For voice cloning? For archival scraping of journalism and music catalogs? For derivative outputs? For model fine-tuning? For prompt exploitation? For replacement economics?

The bill carefully avoids the training issue. Which is the whole issue.

A real AI consent regime would force Congress to confront copyright primacy, opt-in licensing, derivative works, NIL rights, data theft, model ownership, and platform liability. Khanna’s framework gestures at harms while preserving the industrial ingestion model intact.

The Ownership Trap: Work-for-Hire and AI Outputs

This omission is especially telling. Nowhere does Khanna say platforms may not claim authorship or ownership of AI outputs by default. Nowhere does he say AI-assisted works are not works made for hire. Nowhere does he say users retain rights in their contributions and edits. Nowhere does he say WFH boilerplate cannot be used to convert prompts into platform-owned assets.

That silence is catastrophic.

Right now, platforms are already asserting ownership contractually, claiming assignments of outputs, claiming compilation rights, claiming derivative rights, controlling downstream licensing, locking creators out of monetization, and building synthetic catalogs they own. Even though U.S. law says purely AI-generated content isn’t copyrightable absent human authorship, platforms can still weaponize terms of service, automated enforcement, and contractual asymmetry to create “synthetic  ownership” or “practical control.” Khanna’s resolution says nothing about any of it.

Portable Benefits as a Substitute for Labor Rights

Then there’s the portable-benefits mirage. Portable benefits sound progressive. They are also the classic substitute for confronting misclassification. So first of all, Khanna starts our saying that “gig workers” in the creative economy don’t get health care—aside from the union health plans, I guess. But then he starts with the portable benefits mirage. So which is it? Surely he doesn’t mean nothing from nothing leaves nothing?

If you don’t want to deal with whether creators are actually employees, whether platforms owe payroll taxes, whether wage-and-hour law applies, whether unemployment insurance applies, whether workers’ comp applies, whether collective bargaining rights attach, or…wait for it…stock options apply…you propose portable benefits without dealing with the reality that there are no benefits. You preserve contractor status. You socialize costs and privatize upside. You deflect labor-law reform and health insurance reform for that matter. You look compassionate. And you change nothing structurally.

Khanna’s framework sits squarely in that tradition of nothing from nothing leaves nothing.

A Non-Binding Resolution for a Reason

The final tell is procedural. Khanna didn’t introduce a bill. He introduced a non-binding resolution.

No enforceable rights. No regulatory mandates. No private causes of action. No remedies. No penalties. No agency duties. No legal obligations.

This isn’t legislation. It’s political signaling.

What This Really Is: A Political Shield

Put all of this together and the picture becomes clear. Khanna’s “Creator Bill of Rights” is built on a false revenue-share premise. It is framed around influencers. It bypasses professional creators. It bypasses unions. It bypasses non-featured artists. It bypasses child labor. It bypasses training consent. It bypasses copyright primacy. It bypasses WFH abuse. It bypasses platform ownership grabs. It bypasses misclassification. It bypasses enforceability. I give you…Uber.

It doesn’t fail because it’s hostile to creators, rather because it is indifferent to creators. It fails because it redefines “creator” downward until every hard political and legal question disappears.

And in doing so, it functions as a political shield for the very platforms headquartered in Khanna’s district.

When the Penny Drops

Ro Khanna’s “Creator Bill of Rights” isn’t a rights charter.

It’s a narrative framework designed to stabilize the influencer economy, legitimize platform compensation models, preserve contractor status, soften AI backlash, avoid copyright primacy, avoid labor-law reform, avoid ownership reform, and avoid real accountability.

It treats transparency as leverage. It treats consent as vibes. It treats revenue share as natural law. It treats AI as branding. It treats creative labor as content. It treats platforms as inevitable.

And it leaves out the people who are actually being scraped, displaced, devalued, erased, and replaced: musicians, journalists, photographers, actors, directors, songwriters, composers, engineers, non-featured performers, visual artists, and professional creators.

If Congress actually wants a bill of rights for creators, it won’t start with influencer UX and non-binding resolutions. It will start with enforceable intellectual-property rights, training consent, opt-in regimes, audit rights, statutory floors, collective bargaining, exclusion of AI outputs from work-for-hire, limits on platform ownership claims, labor classification clarity, and real remedies.

Until then, this isn’t a bill of rights.

It’s a press release with footnotes.

What Would Freud Do? The Unconscious Is Not a Database — and Humans Are Not Machines

What would Freud do?

It’s a strange question to ask about AI and copyright, but a useful one. When generative-AI fans insist that training models on copyrighted works is merely “learning like a human,” they rely on a metaphor that collapses under even minimal scrutiny. Psychoanalysis—whatever one thinks of Freud’s conclusions—begins from a premise that modern AI rhetoric quietly denies: the unconscious is not a database, and humans are not machines.

As Freud wrote in The Interpretation of Dreams, “Our memory has no guarantees at all, and yet we bow more often than is objectively justified to the compulsion to believe what it says.” No AI truthiness there.

Human learning does not involve storing perfect, retrievable copies of what we read, hear, or see. Memory is reconstructive, shaped by context, emotion, repression, and time. Dreams do not replay inputs; they transform them. What persists is meaning, not a file.

AI training works in the opposite direction—obviously. Training begins with high-fidelity copying at industrial scale. It converts human expressive works into durable statistical parameters designed for reuse, recall, and synthesis for eternity. Where the human mind forgets, distorts, and misremembers as a feature of cognition, models are engineered to remember as much as possible, as efficiently as possible, and to deploy those memories at superhuman speed. Nothing like humans.

Calling these two processes “the same kind of learning” is not analogy—it is misdirection. And that misdirection matters, because copyright law was built around the limits of human expression: scarcity, imperfection, and the fact that learning does not itself create substitute works at scale.

Dream-Work Is Not a Training Pipeline

Freud’s theory of dreams turns on a simple but powerful idea: the mind does not preserve experience intact. Instead, it subjects experience to dream-work—processes like condensation (many ideas collapsed into one image), displacement (emotional significance shifted from one object to another), and symbolization (one thing representing another, allowing humans to create meaning and understanding through symbols). The result is not a copy of reality but a distorted, overdetermined construction whose origins cannot be cleanly traced.

This matters because it shows what makes human learning human. We do not internalize works as stable assets. We metabolize them. Our memories are partial, fallible, and personal. Two people can read the same book and walk away with radically different understandings—and neither “contains” the book afterward in any meaningful sense. There is no Rashamon effect for an AI.

AI training is the inverse of dream-work. It depends on perfect copying at ingestion, retention of expressive regularities across vast parameter spaces, and repeatable reuse untethered from embodiment, biography, or forgetting. If Freud’s model describes learning as transformation through loss, AI training is transformation through compression without forgetting.

One produces meaning. The other produces capacity.

The Unconscious Is Not a Database

Psychoanalysis rejects the idea that memory functions like a filing cabinet. The unconscious is not a warehouse of intact records waiting to be retrieved. Memory is reconstructed each time it is recalled, reshaped by narrative, emotion, and social context. Forgetting is not a failure of the system; it is a defining feature.

AI systems are built on the opposite premise. Training assumes that more retention is better, that fidelity is a virtue, and that expressive regularities should remain available for reuse indefinitely. What human cognition resists by design—perfect recall at scale—machine learning seeks to maximize.

This distinction alone is fatal to the “AI learns like a human” claim. Human learning is inseparable from distortion, limitation, and individuality. AI training is inseparable from durability, scalability, and reuse.

In The Divided Self, R. D. Laing rejects the idea that the mind is a kind of internal machine storing stable representations of experience. What we encounter instead is a self that exists only precariously, defined by what Laing calls ontological security” or its absence—the sense of being real, continuous, and alive in relation to others. Experience, for Laing, is not an object that can be detached, stored, or replayed; it is lived, relational, and vulnerable to distortion. He warns repeatedly against confusing outward coherence with inner unity, emphasizing that a person may present a fluent, organized surface while remaining profoundly divided within. That distinction matters here: performance is not understanding, and intelligible output is not evidence of an interior life that has “learned” in any human sense.

Why “Unlearning” Is Not Forgetting

Once you understand this distinction, the problem with AI “unlearning” becomes obvious.

In human cognition, there is no clean undo. Memories are never stored as discrete objects that can be removed without consequence. They reappear in altered forms, entangled with other experiences. Freud’s entire thesis rests on the impossibility of clean erasure.

AI systems face the opposite dilemma. They begin with discrete, often unlawful copies, but once those works are distributed across parameters, they cannot be surgically removed with certainty. At best, developers can stop future use, delete datasets, retrain models, or apply partial mitigation techniques (none of which they are willing to even attempt). What they cannot do is prove that the expressive contribution of a particular work has been fully excised.

This is why promises (especially contractual promises) to “reverse” improper ingestion are so often overstated. The system was never designed for forgetting. It was designed for reuse.

Why This Matters for Fair Use and Market Harm

The “AI = human learning” analogy does real damage in copyright analysis because it smuggles conclusions into fair-use factor one (transformative purpose and character) and obscures factor four (market harm).

Learning has always been tolerated under copyright law because learning does not flood markets. Humans do not emerge from reading a novel with the ability to generate thousands of competing substitutes at scale. Generative models do exactly that—and only because they are trained through industrial-scale copying.

Copyright law is calibrated to human limits. When those limits disappear, the analysis must change with them. Treating AI training as merely “learning” collapses the very distinction that makes large-scale substitution legally and economically significant.

The Pensieve Fallacy

There is a world in which minds function like databases. It is a fictional one.

In Harry Potter and the Goblet of Fire, wizards can extract memories, store them in vials, and replay them perfectly using a Pensieve. Memories in that universe are discrete, stable, lossless objects. They can be removed, shared, duplicated, and inspected without distortion. As Dumbledore explained to Harry, “I use the Pensieve. One simply siphons the excess thoughts from one’s mind, pours them into the basin, and examines them at one’s leisure. It becomes easier to spot patterns and links, you understand, when they are in this form.”

That is precisely how AI advocates want us to imagine learning works.

But the Pensieve is magic because it violates everything we know about human cognition. Real memory is not extractable. It cannot be replayed faithfully. It cannot be separated from the person who experienced it. Arguably, Freud’s work exists because memory is unstable, interpretive, and shaped by conflict and context.

AI training, by contrast, operates far closer to the Pensieve than to the human mind. It depends on perfect copies, durable internal representations, and the ability to replay and recombine expressive material at will.

The irony is unavoidable: the metaphor that claims to make AI training ordinary only works by invoking fantasy.

Humans Forget. Machines Remember.

Freud would not have been persuaded by the claim that machines “learn like humans.” He would have rejected it as a category error. Human cognition is defined by imperfection, distortion, and forgetting. AI training is defined by reproduction, scale, and recall.

To believe AI learns like a human, you have to believe humans have Pensieves. They don’t. That’s why Pensieves appear in Harry Potter—not neuroscience, copyright law, or reality.

Less Than Zero: The Significance of the Per Stream Rate and Why It Matters

Spotify’s insistence that it’s “misleading” to compare services based on a derived per-stream rate reveals exactly how out of touch the company has become with the very artists whose labor fuels its stock price. Artists experience streaming one play at a time, not as an abstract revenue pool or a complex pro-rata formula. Each stream represents a listener’s decision, a moment of engagement, and a microtransaction of trust. Dismissing the per-stream metric as irrelevant is a rhetorical dodge that shields Spotify from accountability for its own value proposition. (The same applies to all streamers, but Spotify is the only one that denies the reality of the per-stream rate.)

Spotify further claims that users don’t pay per stream but for access as if that negates the artist’s per stream rate payments. It is fallacious to claim that because Spotify users pay a subscription fee for “access,” there is no connection between that payment and any one artist they stream. This argument treats music like a public utility rather than a marketplace of individual works. In reality, users subscribe because of the artists and songs they want to hear; the value of “access” is wholly derived from those choices and the fans that artists drive to the platform. Each stream represents a conscious act of consumption and engagement that justifies compensation.

Economically, the subscription fee is not paid into a vacuum — it forms a revenue pool that Spotify divides among rights holders according to streams. Thus, the distribution of user payments is directly tied to which artists are streamed, even if the payment mechanism is indirect. To say otherwise erases the causal relationship between fan behavior and artist earnings.

The “access” framing serves only to obscure accountability. It allows Spotify to argue that artists are incidental to its product when, in truth, they are the product. Without individual songs, there is nothing to access. The subscription model may bundle listening into a single fee, but it does not sever the fundamental link between listener choice and the artist’s right to be paid fairly for that choice.

Less Than Zero Effect: AI, Infinite Supply and Erasing Artist

In fact, this “access” argument may undermine Spotify’s point entirely. If subscribers pay for access, not individual plays, then there’s an even greater obligation to ensure that subscription revenue is distributed fairly across the artists who generate the listening engagement that keeps fans paying each month. The opacity of this system—where listeners have no idea how their money is allocated—protects Spotify, not artists. If fans understood how little of their monthly fee reached the musicians they actually listen to, they might demand a user-centric payout model or direct licensing alternatives. Or they might be more inclined to use a site like Bandcamp. And Spotify really doesn’t want that.

And to anticipate Spotify’s typical deflection—that low payments are the label’s fault—that’s not correct either. Spotify sets the revenue pool, defines the accounting model, and negotiates the rates. Labels may divide the scraps, but it’s Spotify that decides how small the pie is in the first place either through its distribution deals or exercising pricing power.

Three Proofs of Intention

Daniel Ek, the Spotify CEO and arms dealer, made a Dickensian statement that tells you everything you need to know about how Spotify perceives their role as the Streaming Scrooge—“Today, with the cost of creating content being close to zero, people can share an incredible amount of content”.

That statement perfectly illustrates how detached he has become from the lived reality of the people who actually make the music that powers his platform’s market capitalization (which allows him to invest in autonomous weapons). First, music is not generic “content.” It is art, labor, and identity. Reducing it to “content” flattens the creative act into background noise for an algorithmic feed. That’s not rhetoric; it’s a statement of his values. Of course in his defense, “near zero cost” to a billionaire like Ek is not the same as “near zero cost” to any artist. This disharmonious statement shows that Daniel Ek mistakes the harmony of the people for the noise of the marketplace—arming algorithms instead of artists.

Second, the notion that the cost of creating recordings is “close to zero” is absurd. Real artists pay for instruments, studios, producers, engineers, session musicians, mixing, mastering, artwork, promotion, and often the cost of simply surviving long enough to make the next record or write the next song. Even the so-called “bedroom producer” incurs real expenses—gear, software, electricity, distribution, and years of unpaid labor learning the craft. None of that is zero. As I said in the UK Parliament’s Inquiry into the Economics of Streaming, when the day comes that a soloist aspires to having their music included on a Spotify “sleep” playlist, there’s something really wrong here.

Ek’s comment reveals the Silicon Valley mindset that art is a frictionless input for data platforms, not an enterprise of human skill, sacrifice, and emotion. When the CEO of the world’s dominant streaming company trivializes the cost of creation, he’s not describing an economy—he’s erasing one.

While Spotify tries to distract from the “per-stream rate,” it conveniently ignores the reality that whatever it pays “the music industry” or “rights holders” for all the artists signed to one label still must be broken down into actual payments to the individual artists and songwriters who created the work. Labels divide their share among recording artists; publishers do the same for composers and lyricists. If Spotify refuses to engage on per-stream value, what it’s really saying is that it doesn’t want to address the people behind the music—the very creators whose livelihoods depend on those streams. In pretending the per-stream question doesn’t matter, Spotify admits the artist doesn’t matter either.

Less Than Zero or Zeroing Out: Where Do We Go from Here?

The collapse of artist revenue and the rise of AI aren’t coincidences; they’re two gears in the same machine. Streaming’s economics rewards infinite supply at near-zero unit cost which is really the nugget of truth in Daniel Ek’s statements. This is evidenced by Spotify’s dalliances with Epidemic Sound and the like. But—human-created music is finite and costly; AI music is effectively infinite and cheap. For a platform whose margins improve as payout obligations shrink, the logical endgame is obvious: keep the streams, remove the artists.

  • Two-sided market math. Platforms sell audience attention to advertisers and access to subscribers. Their largest variable cost is royalties. Every substitution of human tracks with synthetic “sound-alikes,” noise, functional audio, or AI mashup reduces royalty liability while keeping listening hours—and revenue—intact. You count the AI streams just long enough to reduce the royalty pool, then you remove them from the system, only to be replace by more AI tracks. Spotify’s security is just good enough to miss the AI tracks for at least one royalty accounting period.
  • Perpetual content glut as cover. Executives say creation costs are “near zero,” justifying lower per-stream value. That narrative licenses a race to the bottom, then invites AI to flood the catalog so the floor can fall further.
  • Training to replace, not to pay. Models ingest human catalogs to learn style and voice, then output “good enough” music that competes with the very works that trained them—without the messy line item called “artist compensation.”
  • Playlist gatekeeping. When discovery is centralized in editorial and algorithmic playlists, platforms can steer demand toward low-or-no-royalty inventory (functional audio, public-domain, in-house/commissioned AI), starving human repertoire while claiming neutrality.
  • Investor alignment. The story that scales is not “fair pay”; it’s “gross margin expansion.” AI is the lever that turns culture into a fixed cost and artists into externalities.

Where does that leave us? Both streaming and AI “work” best for Big Tech, financially, when the artist is cheap enough to ignore or easy enough to replace. AI doesn’t disrupt that model; it completes it. It also gives cover through a tortured misreading through the “national security” lens so natural for a Lord of War investor like Mr. Ek who will no doubt give fellow Swede and one of the great Lords of War, Alfred Nobel, a run for his money. (Perhaps Mr. Ek will reimagine the Peace Prize.) If we don’t hard-wire licensing, provenance, and payout floors, the platform’s optimal future is music without musicians.

Plato conceived justice as each part performing its proper function in harmony with the whole—a balance of reason, spirit, and appetite within the individual and of classes within the city. Applied to AI synthetic works like those generated by Sora 2, injustice arises when this order collapses: when technology imitates creation without acknowledging the creators whose intellect and labor made it possible. Such systems allow the “appetitive” side—profit and scale—to dominate reason and virtue. In Plato’s terms, an AI trained on human art yet denying its debt to artists enacts the very disorder that defines injustice.

Schrödinger’s Training Clause: How Platforms Like WeTransfer Say They’re Not Using Your Files for AI—Until They Are

Tech companies want your content. Not just to host it, but for their training pipeline—to train models, refine algorithms, and “improve services” in ways that just happen to lead to new commercial AI products. But as public awareness catches up, we’ve entered a new phase: deniable ingestion.

Welcome to the world of the Schrödinger’s training clause—a legal paradox where your data is simultaneously not being used to train AI and fully licensed in case they decide to do so.

The Door That’s Always Open

Let’s take the WeTransfer case. For a brief period this month (in July 2025), their Terms of Service included an unmistakable clause: users granted them rights to use uploaded content to “improve the performance of machine learning models.” That language was direct. It caused backlash. And it disappeared.

Many mea culpas later, their TOS has been scrubbed clean of AI references. I appreciate the sentiment, really I do. But—and there’s always a but–the core license hasn’t changed. It’s still:

– Perpetual

– Worldwide

– Royalty-free

– Transferable

– Sub-licensable

They’ve simply returned the problem clause to its quantum box. No machine learning references. But nothing that stops it either.

 A Clause in Superposition

Platforms like WeTransfer—and others—have figured out the magic words: Don’t say you’re using data to train AI. Don’t say you’re not using it either. Instead, claim a sweeping license to do anything necessary to “develop or improve the service.”

That vague phrasing allows future pivots. It’s not a denial. It’s a delay. And to delay is to deny.

That’s what makes it Schrödinger’s training clause: Your content isn’t being used for AI. Unless it is. And you won’t know until someone leaks it, or a lawsuit makes discovery public.

The Scrape-Then-Scrub Scenario

Let’s reconstruct what could have happened–not saying it did happen, just could have–following the timeline in The Register:

1. Early July 2025: WeTransfer silently updates its Terms of Service to include AI training rights.

2. Users continue uploading sensitive or valuable content.

3. [Somebody’s] AI systems quickly ingest that data under the granted license.

4. Public backlash erupts mid-July.

5. WeTransfer removes the clause—but to my knowledge never revokes the license retroactively or promises to delete what was scraped. In fact, here’s their statement which includes this non-denial denial: “We don’t use machine learning or any form of AI to process content shared via WeTransfer.” OK, that’s nice but that wasn’t the question. And if their TOS was so clear, then why the amendment in the first place?

Here’s the Potential Legal Catch

Even if WeTransfer removed the clause later, any ingestion that occurred during the ‘AI clause window’ is arguably still valid under the terms then in force. As far as I know, they haven’t promised:

– To destroy any trained models

– To purge training data caches

– Or to prevent third-party partners from retaining data accessed lawfully at the time

What Would ‘Undoing’ Scraping Require?

– Audit logs to track what content was ingested and when

– Reversion of any models trained on user data

– Retroactive license revocation and sub-license termination

None of this has been offered that I have seen.

What ‘We Don’t Train on Your Data’ Actually Means

When companies say, “we don’t use your data to train AI,” ask:

– Do you have the technical means to prevent that?

– Is it contractually prohibited?

– Do you prohibit future sublicensing?

– Can I audit or opt out at the file level?

If the answer to those is “no,” then the denial is toothless.

How Creators Can Fight Back

1. Use platforms that require active opt-in for AI training.

2. Encrypt files before uploading.

3. Include counter-language in contracts or submission terms:

   “No content provided may be used, directly or indirectly, to train or fine-tune machine learning or artificial intelligence systems, unless separately and explicitly licensed for that purpose in writing” or something along those lines.

4. Call it out. If a platform uses Schrödinger’s language, name it. The only thing tech companies fear more than litigation is transparency.

What is to Be Done?

The most dangerous clauses aren’t the ones that scream “AI training.” They’re the ones that whisper, “We’re just improving the service.”

If you’re a creative, legal advisor, or rights advocate, remember: the future isn’t being stolen with force. It’s being licensed away in advance, one unchecked checkbox at a time.

And if a platform’s only defense is “we’re not doing that right now”—that’s not a commitment. That’s a pause.

That’s Schrödinger’s training clause.

When Viceroy David Sacks Writes the Tariffs: How One VC Could Weaponize U.S. Trade Against the EU

David Sacks is a “Special Government Employee”, Silicon Valley insider and a PayPal mafioso who has become one of the most influential “unofficial” architects of AI policy under the Trump administration. No confirmation hearings, no formal role—but direct access to power.

He:
– Hosts influential political podcasts with Musk and Thiel-aligned narratives.
– Coordinates behind closed doors with elite AI companies who are now PRC-style “national champions” (OpenAI, Anthropic, Palantir).
– Has reportedly played a central role in shaping the AI Executive Orders and industrial strategy driving billions in public infrastructure to favored firms.

Under 18 U.S.C. § 202(a), a Special Government Employee is:

  • Temporarily retained to perform limited government functions,
  • For no more than 130 days per year (which for Sacks ends either April 14 or May 30, 2025), unless reappointed in a different role,
  • Typically serves in an advisory or consultative role, or
  • Without holding actual decision-making or operational authority over federal programs or agencies.

SGEs are used to avoid conflict-of-interest entanglements for outside experts while still tapping their expertise for advisory purposes. They are not supposed to wield sweeping executive power or effectively run a government program. Yeah, right.

And like a good little Silicon Valley weasel, Sacks supposedly is alternating between his DC side hustle and his VC office to stay under 130 days. This is a dumbass reading of the statute which says “‘Special Government employee’ means… any officer or employee…retained, designated, appointed, or employed…to perform…temporary duties… for not more than 130 days during any period of 365 consecutive days.” That’s not the same as “worked” 130 days on the time card punch. But oh well.

David Sacks has already exceeded the legal boundaries of his appointment as a Special Government Employee (SGE) both in time served but also by directing the implementation of a sweeping, whole-of-government AI policy, including authoring executive orders, issuing binding directives to federal agencies, and coordinating interagency enforcement strategies—actions that plainly constitute executive authority reserved for duly appointed officers under the Appointments Clause. As an SGE, Sacks is authorized only to provide temporary, nonbinding advice, not to exercise operational control or policy-setting discretion across the federal government. Accordingly, any executive actions taken at his direction or based on his advisement are constitutionally infirm as the unlawful product of an individual acting without valid authority, and must be deemed void as “fruit of the poisonous tree.”

Of course, one of the states that the Trump AI Executive Orders will collide with almost immediately is the European Union and its EU AI Act. Were they 51st? No that’s Canada. 52nd? Ah, right that’s Greenland. Must be 53rd.

How Could David Sacks Weaponize Trade Policy to Help His Constituents in Silicon Valley?

Here’s the playbook:

Engineer Executive Orders

Through his demonstrated access to Trump and senior White House officials, Sacks could promote executive orders under the International Emergency Economic Powers Act (IEEPA) or Section 301 of the Trade Act, aimed at punishing countries (like EU members) for “unfair restrictions” on U.S. AI exports or operations.

Something like this: “The European Union’s AI Act constitutes a discriminatory and protectionist measure targeting American AI innovation, and materially threatens U.S. national security and technological leadership.” I got your moratorium right here.

Leverage the USTR as a Blunt Instrument

The Office of the U.S. Trade Representative (USTR) can initiate investigations under Section 301 without needing new laws. All it takes is political will—and a nudge from someone like Viceroy Sacks—to argue that the EU’s AI Act discriminates against U.S. firms. See Canada’s “Tech Tax”. Gee, I wonder if Viceroy Sacks had anything to do with that one.

Redefine “National Security”

Sacks and his allies can exploit the Trump administration’s loose definition of “national security” claiming that restricting U.S. AI firms in Europe endangers critical defense and intelligence capabilities.

Smear Campaigns and Influence Operations

Sacks could launch more public campaigns against the EU like his attacks on the AI diffusion rule. According to the BBC, “Mr. Sacks cited the alienation of allies as one of his key arguments against the AI diffusion plan”. That’s a nice ally you got there, be a shame if something happened to it.

After all, the EU AI Act does what Sacks despises like protects artists and consumers, restricts deployment of high-risk AI systems (like facial recognition and social scoring), requires documentation of training data (which exposes copyright violations), and applies extraterritorially (meaning U.S. firms must comply even at home).

And don’t forget, Viceroy Sacks actually was given a portfolio that at least indirectly includes the National Security Council, so he can use the NATO connection to put a fine edge on his “industrial patriotism” just as war looms over Europe.

When Policy Becomes Personal

In a healthy democracy, trade retaliation should be guided by evidence, public interest, and formal process.

But under the current setup, someone like David Sacks can short-circuit the system—turning a private grievance into a national trade war. He’s already done it to consumers, wrongful death claims and copyright, why not join war lords like Eric Schmidt and really jack with people? Like give deduplication a whole new meaning.

When one man’s ideology becomes national policy, it’s not just bad governance.

It’s a broligarchy in real time.