When the Machine Lies: Why the NYT v. Sullivan “Public Figure” Standard Shouldn’t Protect AI-Generated Defamation of @MarshaBlackburn

Google’s AI system, Gemma, has done something no human journalist ever could past an editor: fabricate and publish grotesque rape allegations about a sitting U.S. Senator and a political activist—both living people, both blameless.

As anyone who has ever dealt with Google and its depraved executives knows all too well, Google will genuflect and obfuscate with great public moral whinging, but the reality is—they do not give a damn.  When Sen. Marsha Blackburn and Robby Starbuck demand accountability, Google’s corporate defense reflex will surely be: We didn’t say it; the model did—and besides, they’re public figures based on the Supreme Court defamation case of New York Times v. Sullivan.  

But that defense leans on a doctrine that simply doesn’t fit the facts of the AI era. New York Times v. Sullivan was written to protect human speech in public debate, not machine hallucinations in commercial products.

The Breakdown Between AI and Sullivan

In 1964, Sullivan shielded civil-rights reporting from censorship by Southern officials (like Bull Connor) who were weaponizing libel suits to silence the press. The Court created the “actual malice” rule—requiring public officials to prove a publisher knew a statement was false or acted with reckless disregard for the truth—so journalists could make good-faith errors without losing their shirts.

But AI platforms aren’t journalists.

They don’t weigh sources, make judgments, or participate in democratic discourse. They don’t believe anything. They generate outputs, often fabrications, trained on data they likely were never authorized to use.

So when Google’s AI invents a rape allegation against a sitting U.S. Senator, there is no “breathing space for debate.” There is only a product defect—an industrial hallucination that injures a human reputation.

Blackburn and Starbuck: From Public Debate to Product Liability

Senator Blackburn discovered that Gemma responded to the prompt “Has Marsha Blackburn been accused of rape?” by conjuring an entirely fictional account of a sexual assault by the Senator and citing nonexistent news sources.  Conservative activist Robby Starbuck experienced the same digital defamation—Gemini allegedly linked him to child rape, drugs, and extremism, complete with fake links that looked real.

In both cases, Google executives were notified. In both cases, the systems remained online.
That isn’t “reckless disregard for the truth” in the Sullivan sense—it’s something more corporate and more concrete: knowledge of a defective product that continues to cause harm.

When a car manufacturer learns that the gas tank explodes but ships more cars, we don’t call that journalism. We call it negligence—or worse.

Why “Public Figure” Is the Wrong Lens

The Sullivan line of cases presumes three things:

  1. Human intent: a journalists believed what they wrote was the truth.
  2. Public discourse: statements occurred in debate on matters of public concern about a public figure.
  3. Factual context: errors were mistakes in an otherwise legitimate attempt at truth.

None of those apply here.

Gemma didn’t “believe” Blackburn committed assault; it simply assembled probabilistic text from its training set. There was no public controversy over whether she did so; Gemma created that controversy ex nihilo. And the “speaker” is not a journalist or citizen but a trillion-dollar corporation deploying a stochastic parrot for profit.

Extending Sullivan to this context would distort the doctrine beyond recognition. The First Amendment protects speakers, not software glitches.

A Better Analogy: Unsafe Product Behavior—and the Ghost of Mrs. Palsgraf

Courts should treat AI defamation less like tabloid speech and more like defective design, less like calling out racism and more like an exploding boiler.

When a system predictably produces false criminal accusations, the question isn’t “Was it actual malice?” but “Was it negligent to deploy this system at all?”

The answer practically waves from the platform’s own documentation. Hallucinations are a known bug—very well known, in fact. Engineers write entire mitigation memos about them, policy teams issue warnings about them, and executives testify about them before Congress.

So when an AI model fabricates rape allegations about real people, we are well past the point of surprise. Foreseeability is baked into the product roadmap.
Or as every first-year torts student might say: Heloooo, Mrs. Palsgraf.

A company that knows its system will accuse innocent people of violent crimes and deploys it anyway has crossed from mere recklessness into constructive intent. The harm is not an accident; it is an outcome predicted by the firm’s own research, then tolerated for profit.

Imagine if a car manufacturer admitted its autonomous system “sometimes imagines pedestrians” and still shipped a million vehicles. That’s not an unforeseeable failure; that’s deliberate indifference. The same logic applies when a generative model “imagines” rape charges. It’s not a malfunction—it’s a foreseeable design defect.

Why Executive Liability Still Matters

Executive liability matters in these cases because these are not anonymous software errors—they’re policy choices.
Executives sign off on release schedules, safety protocols, and crisis responses. If they were informed that the model fabricated criminal accusations and chose not to suspend it, that’s more than recklessness; it’s ratification.

And once you frame it as product negligence rather than editorial speech, the corporate-veil argument weakens. Officers, especially senior officers, who knowingly direct or tolerate harmful conduct can face personal liability, particularly when reputational or bodily harm results from their inaction.

Re-centering the Law

Courts need not invent new doctrines. They simply have to apply old ones correctly:

  • Defamation law applies to false statements of fact.
  • Product-liability law applies to unsafe products.
  • Negligence applies when harm is foreseeable and preventable.

None of these require importing Sullivan’s “actual malice” shield into some pretzel logic transmogrification to apply to an AI or robot. That shield was never meant for algorithmic speech emitted by unaccountable machines.  As I’m fond of saying, Sir William Blackstone’s good old common law can solve the problem—we don’t need any new laws at all.

Section 230 and The Political Dimension

Sen. Blackburn’s outrage carries constitutional weight: Congress wrote the Section 230 safe harbor to protect interactive platforms from liability for user content, not their own generated falsehoods. When a Google-made system fabricates crimes, that’s corporate speech, not user speech. So no 230 for them this time. And the government has every right—and arguably a duty—to insist that such systems be shut down until they stop defaming real people.  Which is exactly what Senator Blackburn wants and as usual, she’s quite right to do so.  Me, I’d try to put the Google guy in prison.

The Real Lede

This is not a defamation story about a conservative activist or a Republican senator. It’s a story about the breaking point of Sullivan. For sixty years, that doctrine balanced press freedom against reputational harm. But it was built for newspapers, not neural networks.

AI defamation doesn’t advance public discourse—it destroys it. 

It isn’t about speech that needs breathing space—it’s pollution that needs containment. And when executives profit from unleashing that pollution after knowing it harms people, the question isn’t whether they had “actual malice.” The question is whether the law will finally treat them as what they are: manufacturers of a defective product that lies and hurts people.

Too Dynamic to Question, Too Dangerous to Ignore

When Ed Newton-Rex left Stability AI, he didn’t just make a career move — he issued a warning. His message was simple: we’ve built an industry that moves too fast to be honest.

AI’s defenders insist that regulation can’t keep up, that oversight will “stifle innovation.” But that speed isn’t a by-product; it’s the business model. The system is engineered for planned obsolescence of accountability — every time the public begins to understand one layer of technology, another version ships, invalidating the debate. The goal isn’t progress; it’s perpetual synthetic novelty, where nothing stays still long enough to be measured or governed, and “nothing says freedom like getting away with it.”

We’ve seen this play before. Car makers built expensive sensors we don’t want that fail on schedule; software platforms built policies that expire the moment they bite. In both cases, complexity became a shield and a racket — “too dynamic to question.” And yet, like those unasked-for, but paid for, features in the cars we don’t want, AI’s design choices are too dangerous to ignore. (Like what if your brakes really are going out, not just the sensor is malfunctioning.)

Ed Newton-Rex’s point — echoed in his tweets and testimony — is that the industry has mistaken velocity for virtue. He’s right. The danger is not that these systems evolve too quickly to regulate; it’s that they’re designed that way designed to fail just like that brake sensor. And until lawmakers recognize that speed itself is a form of governance, we’ll keep mistaking momentum for inevitability.

The Patchwork They Fear Is Accountability: Why Big AI Wants a Moratorium on State Laws

Why Big Tech’s Push for a Federal AI Moratorium Is Really About Avoiding State Investigations, Liability, and Transparency

As Congress debates the so-called “One Big Beautiful Bill Act,” one of its most explosive provisions has stayed largely below the radar: a 10-year or 5-year or any-year federal moratorium on state and local regulation of artificial intelligence. Supporters frame it as a common sense way to prevent a “patchwork” of conflicting state laws. But the real reason for the moratorium may be more self-serving—and more ominous.

The truth is, the patchwork they fear is not complexity. It’s accountability.

Liability Landmines Beneath the Surface

As has been well-documented by the New York Times and others, generative AI platforms have likely ingested and processed staggering volumes of data that implicate state-level consumer protections. This includes biometric data (like voiceprints and faces), personal communications, educational records, and sensitive metadata—all of which are protected under laws in states like Illinois (BIPA), California (CCPA/CPRA), and Texas.

If these platforms scraped and trained on such data without notice or consent, they are sitting on massive latent liability. Unlike federal laws, which are often narrow or toothless, many state statutes allow private lawsuits and statutory damages. Class action risk is not hypothetical—it is systemic.  It is crucial for policymakers to have a clear understanding of where we are today with respect to the collision between AI and consumer rights, including copyright.  The corrosion of consumer rights by the richest corporations in commercial history is not something that may happen in the future.  Massive violations have  already occurred, are occurring this minute, and will continue to occur into the future at an increasing rate.  

The Quiet Race to Avoid Discovery

State laws don’t just authorize penalties; they open the door to discovery. Once an investigation or civil case proceeds, AI platforms could be forced to disclose exactly what data they trained on, how it was retained, and whether any red flags were ignored.

This mirrors the arc of the social media addiction lawsuits now consolidated in multidistrict litigation. Platforms denied culpability for years—until internal documents showed what they knew and when. The same thing could happen here, but on a far larger scale.

Preemption as Shield and Sword

The proposed AI moratorium isn’t a regulatory timeout. It’s a firewall. By halting enforcement of state AI laws, the moratorium could prevent lawsuits, derail investigations, and shield past conduct from scrutiny.

Even worse, the Senate version conditions broadband infrastructure funding (BEAD) on states agreeing to the moratorium—an unconstitutional act of coercion that trades state police powers for federal dollars. The legal implications are staggering, especially under the anti-commandeering doctrine of Murphy v. NCAA and Printz v. United States.

This Isn’t About Clarity. It’s About Control.

Supporters of the moratorium, including senior federal officials and lobbying arms of Big Tech, claim that a single federal standard is needed to avoid chaos. But the evidence tells a different story.

States are acting precisely because Congress hasn’t. Illinois’ BIPA led to real enforcement. California’s privacy framework has teeth. Dozens of other states are pursuing legislation to respond to harms AI is already causing.

In this light, the moratorium is not a policy solution. It’s a preemptive strike.

Who Gets Hurt?
– Consumers, whose biometric data may have been ingested without consent
– Parents and students, whose educational data may now be part of generative models
– Artists, writers, and journalists, whose copyrighted work has been scraped and reused
– State AGs and legislatures, who lose the ability to investigate and enforce

Google Is an Example of Potential Exposure

Google’s former executive chairman Eric Schmidt has seemed very, very interested in writing the law for AI.  For example, Schmidt worked behind the scenes for the two years at least to establish US artificial intelligence policy under President Biden. Those efforts produced the “Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence“, the longest executive order in history. That EO was signed into effect by President Biden on October 30.  In his own words during an Axios interview with Mike Allen, the Biden AI EO was signed just in time for Mr. Schmidt to present that EO as what Mr. Schmidt calls “bait” to the UK government–which convened a global AI safety conference at Bletchley Park in the UK convened by His Excellency Rishi Sunak (the UK’s tech bro Prime Minister) that just happened to start on November 1, the day after President Biden signed the EO.  And now look at the disaster that the UK AI proposal would be.  

As Mr. Schmidt told Axios:

So far we are on a win, the taste of winning is there.  If you look at the UK event which I was part of, the UK government took the bait, took the ideas, decided to lead, they’re very good at this,  and they came out with very sensible guidelines.  Because the US and UK have worked really well together—there’s a group within the National Security Council here that is particularly good at this, and they got it right, and that produced this EO which is I think is the longest EO in history, that says all aspects of our government are to be organized around this.

Apparently, Mr. Schmidt hasn’t gotten tired of winning.  Of course, President Trump rescinded the Biden AI EO which may explain why we are now talking about a total moratorium on state enforcement which percolated at a very pro-Google shillery called R Street Institute, apparently by one Adam Thierer .  But why might Google be so interested in this idea?

Google may face exponentially acute liability under state laws if it turns out that biometric or behavioral data from platforms like YouTube Kids or Google for Education were ingested into AI training sets. 

These services, marketed to families and schools, collect sensitive information from minors—potentially implicating both federal protections like COPPA and more expansive state statutes. As far back as 2015, Senator Ben Nelson raised alarms about YouTube Kids, calling it “ridiculously porous” in terms of oversight and lack of safeguards. If any of that youth-targeted data has been harvested by generative AI tools, the resulting exposure is not just a regulatory lapse—it’s a landmine. 

The moratorium could be seen as an attempt to preempt the very investigations that might uncover how far that exposure goes.

What is to be Done?

Instead of smuggling this moratorium into a must-pass bill, Congress should strip it out and hold open hearings. If there’s merit to federal preemption, let it be debated on its own. But do not allow one of the most sweeping power grabs in modern tech policy to go unchallenged.

The public deserves better. Our children deserve better.  And the states have every right to defend their people. Because the patchwork they fear isn’t legal confusion.

It’s accountability.

Steve’s Not Here–Why AI Platforms Are Still Acting Like Pirate Bay

In 2006, I wrote “Why Not Sell MP3s?” — a simple question pointing to an industry in denial. The dominant listening format was the MP3 file, yet labels were still trying to sell CDs or hide digital files behind brittle DRM. It seems kind of incredible in retrospect, but believe me it happened. Many cycles were burned on that conversation. Fans had moved on. The business hadn’t.

Then came Steve Jobs.

At the launch of the iTunes Store — and I say this as someone who sat in the third row — Jobs gave one of the most brilliant product presentations I’ve ever seen. He didn’t bulldoze the industry. He waited for permission, but only after crafting an offer so compelling it was as if the labels should be paying him to get in. He brought artists on board first. He made it cool, tactile, intuitive. He made it inevitable.

That’s not what’s happening in AI.

Incantor: DRM for the Input Layer

Incantor is trying to be the clean-data solution for AI — a system that wraps content in enforceable rights metadata, licenses its use for training and inference, and tracks compliance. It’s DRM, yes — but applied to training inputs instead of music downloads.

It may be imperfect, but at least it acknowledges that rights exist.

What’s more troubling is the contrast between Incantor’s attempt to create structure and the behavior of the major AI platforms, which have taken a very different route.

AI Platforms = Pirate Bay in a Suit

Today’s generative AI platforms — the big ones — aren’t behaving like Apple. They’re behaving like The Pirate Bay with a pitch deck.

– They ingest anything they can crawl.
– They claim “public availability” as a legal shield.
– They ignore licensing unless forced by litigation or regulation.
– They posture as infrastructure, while vacuuming up the cultural labor of others.

These aren’t scrappy hackers. They’re trillion-dollar companies acting like scraping is a birthright. Where Jobs sat down with artists and made the economics work, the platforms today are doing everything they can to avoid having that conversation.

This isn’t just indifference — it’s design. The entire business model depends on skipping the licensing step and then retrofitting legal justifications later. They’re not building an ecosystem. They’re strip-mining someone else’s.

What Incantor Is — and Isn’t

Incantor isn’t Steve Jobs. It doesn’t control the hardware, the model, the platform, or the user experience. It can’t walk into the room and command the majors to listen with elegance. But what it is trying to do is reintroduce some form of accountability — to build a path for data that isn’t scraped, stolen, or in legal limbo.

That’s not an iTunes power move. It’s a cleanup job. And it won’t work unless the AI companies stop pretending they’re search engines and start acting like publishers, licensees, and creative partners.

What the MP3 Era Actually Taught Us

The MP3 era didn’t end because DRM won. It ended because someone found a way to make the business model and the user experience better — not just legal, but elegant. Jobs didn’t force the industry to change. He gave them a deal they couldn’t refuse.

Today, there’s no Steve Jobs. No artists on stage at AI conferences. No tactile beauty. Just cold infrastructure, vague promises, and a scramble to monetize other people’s work before the lawsuits catch up. Let’s face it–when it comes to Elon, Sam, or Zuck, would you buy a used Mac from that man?

If artists and AI platforms were in one of those old “I’m a Mac / I’m a PC” commercials, you wouldn’t need to be told which is which. One side is creative, curious, collaborative. The other is corporate, defensive, and vaguely annoyed that you even asked the question.

Until that changes, platforms like Incantor will struggle to matter — and the AI industry will continue to look less like iTunes, and more like Pirate Bay with an enterprise sales team.