From Plutonium to Prompt Engineering: Big Tech’s Land Grab at America’s Nuclear Sites–and Who’s Paying for It?

In a twist of post–Cold War irony, the same federal sites that once forged the isotopes of nuclear deterrence are now poised to fuel the arms race of artificial intelligence under the leadership of Special Government Employee and Silicon Valley Viceroy David Sacks. Under a new Department of Energy (DOE) initiative, 16 legacy nuclear and lab sites — including Savannah River, Idaho National Lab, and Oak Ridge Tennessee — are being opened to private companies to host massive AI data centers. That’s right–Tennessee where David Sacks is riding roughshod over the ELVIS Act.

But as this techno-industrial alliance gathers steam, one question looms large: Who benefits — and how will the American public be compensated for leasing its nuclear commons to the world’s most powerful corporations? Spoiler alert: We won’t.

A New Model, But Not the Manhattan Project

This program is being billed in headlines as a “new Manhattan Project for AI.” But that comparison falls apart quickly. The original Manhattan Project was:
– Owned by the government
– Staffed by public scientists
– Built for collective defense

Today’s AI infrastructure effort is:
– Privately controlled
– Driven by monopolies and venture capital
– Structured to avoid transparency and public input
– Uses free leases on public land with private nuclear reactors

Call it the Manhattan Project in reverse — not national defense, but national defense capture.

The Art of the Deal: Who gets what?

What Big Tech Is Getting

– Access to federal land already zoned, secured, and wired
– Exemption from state and local permitting
– Bypass of grid congestion via nuclear-ready substations
– DOE’s help fast-tracking nuclear microreactors (SMRs)
– Potential sovereign AI training enclaves, shielded from export controls and oversight

And all of it is being made available to private companies called the “Frontier labs”: Microsoft, Oracle, Amazon, OpenAI, Anthropic, xAI — the very firms at the center of the AI race.

What the Taxpayer Gets (Maybe)

Despite this extraordinary access, almost nothing is disclosed about how the public is compensated. No known revenue-sharing models. No guaranteed public compute access. No equity. No royalties.

Land lease payments? Not disclosed. Probably none.
Local tax revenue? Minimal (federal lands exempt)
Infrastructure benefit sharing? Unclear or limited

It’s all being negotiated quietly, under vague promises of “national competitiveness.”

Why AI Labs Want DOE Sites

Frontier labs like OpenAI and Anthropic — and their cloud sponsors — need:
– Gigawatts of energy
– Secure compute environments
– Freedom from export rules and Freedom of Information Act requests
– Permitting shortcuts and national branding

The DOE sites offer all of that — plus built-in federal credibility. The same labs currently arguing in court that their training practices are “fair use” now claim they are defenders of democracy training AI on taxpayer-built land.

This Isn’t the Manhattan Project — It’s the Extraction Economy in a Lab Coat

The tech industry loves to invoke patriotism when it’s convenient — especially when demanding access to federal land, nuclear infrastructure, or diplomatic cover from the EU’s AI Act. But let’s be clear:

This isn’t the Manhattan Project. Or rather we should hope it isn’t because that one didn’t end well and still hasn’t.
It’s not public service.
It’s Big Tech lying about fair use, wrapped in an American flag — and for all we know, it might be the first time David Sacks ever saw one.

When companies like OpenAI and Microsoft claim they’re defending democracy while building proprietary systems on DOE nuclear land, we’re not just being gaslit — we’re being looted.

If the AI revolution is built on nationalizing risk and privatizing power, it’s time to ask whose country this still is — and who gets to turn off the lights.

Deduplication and Discovery: The Smoking Gun in the Machine

WINSTON

“Wipe up all those little pieces of brains and skull”

From Pulp Fiction, screenplay by Quentin Tarantino and Roger Avary

Deduplication—the process of removing identical or near-identical content from AI training data—is a critical yet often overlooked indicator that AI platforms actively monitor and curate their training sets. This is the kind of process that one would expect given the kind of “scrape, ready, aim” business practices that seems precisely the approach of AI platforms that have ready access to large amounts of fairly high quality data from users of other products placed into commerce by business affiliates or confederates of the AI platforms.

For example, Google Gemini could have access to gmail, YouTube, at least “publicly available” Google Docs, Google Translate, or Google for Education, and then of course one of the great scams of all time, Google Books. Microsoft uses Bing searches, MSN browsing, the consumer Copilot experience, and ad interactions. Amazon uses Alexa prompts, Facebook uses “public” posts and so on.

This kind of hoovering up of indiscriminate amounts of “data” in the form of your baby pictures posted on Facebook and your user generated content on YouTube is bound to produce duplicates. After all, how may users have posted their favorite Billie Eilish or Taylor Swift music video. AI doesn’t need 10000 versions of “Shake it Off” they probably just need the official video. Enter deduplication–which by definition means the platform knows what it has scraped and also knows what it wants to get rid of.

“Get rid of” is a relative concept. In many systems—particularly in storage environments like backup servers or object stores—deduplication means keeping only one physical copy of a file. Any other instances of that data don’t get stored again; instead, they’re represented by pointers to the original copy. This approach, known as inline deduplication, happens in real time and minimizes storage waste without actually deleting anything of functional value. It requires knowing what you have, knowing you have more than one version of the same thing, and being able to tell the system where to look to find the “original” copy without disturbing the process and burning compute inefficiently.

In other cases, such as post-process deduplication, the system stores data initially, then later scans for and eliminates redundancies. Again, the AI platform knows there are two or more versions of the same thing, say the book Being and Nothingness, knows where to find the copies and has been trained to keep only one version. Even here, the duplicates may not be permanently erased—they might be archived, versioned, or logged for auditing, compliance, or reconstruction purposes.

In AI training contexts, deduplication usually means removing redundant examples from the training set to avoid copyright risk. The duplicate content may be discarded from the training pipeline but often isn’t destroyed. Instead, AI companies may retain it in a separate filtered corpus or keep hashed fingerprints to ensure future models don’t retrain on the same material unknowingly.

So they know what they have, and likely know where it came from. They just don’t want to tell any plaintiffs.

Ultimately, deduplication is less about destruction and more about optimization. It’s a way to reduce noise, save resources, and improve performance—while still allowing systems to track, reference, or even rehydrate the original data if needed.

Its existence directly undermines claims that companies are unaware of which copyrighted works were ingested. Indeed, it only makes sense that one of the hidden consequences of the indiscriminate scraping that underpins large-scale AI training is the proliferation of duplicated data. Web crawlers ingest everything they can access—news articles republished across syndicates, forum posts echoed in aggregation sites, Wikipedia mirrors, boilerplate license terms, spammy SEO farms repeating the same language over and over. Without any filtering, this avalanche of redundant content floods the training pipeline.

This is where deduplication becomes not just useful, but essential. It’s the cleanup crew after a massive data land grab. The more messy and indiscriminate the scraping, the more aggressively the model must filter for quality, relevance, and uniqueness to avoid training inefficiencies or—worse—model behaviors that are skewed by repetition. If a model sees the same phrase or opinion thousands of times, it might assume it’s authoritative or universally accepted, even if it’s just a meme bouncing around low-quality content farms.

Deduplication is sort of the Winston Wolf of AI. And if the cleaner shows up, somebody had to order the cleanup. It is a direct response to the excesses of indiscriminate scraping. It’s both a technical fix and a quiet admission that the underlying data collection strategy is, by design, uncontrolled. But while the scraping may be uncontrolled to get copies of as much of your data has they can lay hands on, even by cleverly changing their terms of use boilerplate so they can do all this under the effluvia of legality, they send in the cleaner to take care of the crime scene.

So to summarize: To deduplicate, platforms must identify content-level matches (e.g., multiple copies of Being and Nothingness by Jean-Paul Sartre). This process requires tools that compare, fingerprint, or embed full documents—meaning the content is readable and classifiable–and, oh, yes, discoverable.

Platforms may choose the ‘cleanest’ copy to keep, showing knowledge and active decision-making about which version of a copyrighted work is retained. And–big finish–removing duplicates only makes sense if operators know which datasets they scraped and what those datasets contain.

Drilling down on a platform’s deduplication tools and practices may prove up knowledge and intent to a precise degree—contradicting arguments of plausible deniability in litigation. Johnny ate the cookies isn’t going to fly. There’s a market clearing level of record keeping necessary for deduping to work at all, so it’s likely that there are internal deduplication logs or tooling pipelines that are discoverable.

When AI platforms object to discovery about deduplication, plaintiffs can often overcome those objections by narrowing their focus. Rather than requesting broad details about how a model deduplicates its entire training set, plaintiffs should ask a simple, specific question: Were any of these known works—identified by title or author—deduplicated or excluded from training?

This approach avoids objections about overbreadth or burden. It reframes discovery as a factual inquiry, not a technical deep dive. If the platform claims the data was not retained, plaintiffs can ask for existing artifacts—like hash filters, logs, or manifests—or seek a sworn statement explaining the loss and when it occurred. That, in turn, opens the door to potential spoliation arguments.

If trade secrets are cited, plaintiffs can propose a protective order, limiting access to outside counsel or experts like we’ve done 100,000 times before in other cases. And if the defendant claims “duplicate” is too vague, plaintiffs can define it functionally—as content that’s identical or substantially similar, by hash, tokens, or vectors.

Most importantly, deduplication is relevant. If a platform identified a plaintiff’s work and trained on it anyway, that speaks to volitional use, copying, and lack of care—key issues in copyright and fair use analysis. And if they lied about it, particularly to the court—Helloooooo Harper & Row. Discovery requests that are focused, tailored, and anchored in specific works stand a far better chance of surviving objections and yielding meaningful evidence which hopefully will be useful and lead to other positive results.

AI’s Legal Defense Team Looks Familiar — Because It Is

If you feel like you’ve seen this movie before, you have.

Back in the 2003-ish runup to the 2005 MGM Studios, Inc. v. Grokster, Ltd. Supreme Court case, I met with the founder of one of the major p2p platforms in an effort to get him to go legal.  I reminded him that he knew there was all kinds of bad stuff that got uploaded to his platform.  However much he denied it, he was filtering it out and he was able to do that because he had the control over the content that he (and all his cohorts) denied he had.  

I reminded him that if this case ever went bad, someone was going to invade his space and find out exactly what he was up to. Just because the whole distributed p2p model (unlike Napster, by the way) was built to both avoid knowledge and be a perpetual motion machine, there was going to come a day when none of that legal advice was going to matter.  Within a few months the platform shut down, not because he didn’t want to go legal, but because he couldn’t, at least not without actually devoting himself to respecting other people’s rights.

Everything Old is New Again

Back in the early 2000s, peer-to-peer (P2P) piracy platforms claimed they weren’t responsible for the illegal music and videos flooding their networks. Today, AI companies claim they don’t know what’s in their training data. The defense is essentially the same: “We’re just the neutral platform. We don’t control the content.”  It’s that distorted view of the DMCA and Section 230 safe harbors that put many lawyers’ children through prep school, college and graduate school.

But just like with Morpheus, eDonkey, Grokster, and LimeWire, everyone knew that was BS because the evidence said otherwise — and here’s the kicker: many of the same lawyers are now running essentially the same playbook to defend AI giants.

The P2P Parallel: “We Don’t Control Uploads… Except We Clearly Do”

In the 2000s, platforms like Kazaa and LimeWire were like my little buddy–magically they  never had illegal pornography or extreme violence available to consumers, they prioritized popular music and movies, and filtered out the worst of the web

That selective filtering made it clear: they knew what was on their network. It wasn’t even a question of “should have known”, they actually knew and they did it anyway.  Courts caught on. 

In Grokster,  the Supreme Court side stepped the hosting issue and essentially said that if you design a platform with the intent to enable infringement, you’re liable.

The Same Playbook in the AI Era

Today’s AI platforms — OpenAI, Anthropic, Meta, Google, and others — essentially argue:
“Our model doesn’t remember where it learned [fill in the blank]. It’s just statistics.”

But behind the curtain, they:
– Run deduplication tools to avoid overloading, for example on copyrighted books
– Filter out NSFW or toxic content
– Choose which datasets to include and exclude
– Fine-tune models to align with somebody’s social norms or optics

This level of control shows they’re not ignorant — they’re deflecting liability just like they did with p2p.

Déjà Vu — With Many of the Same Lawyers

Many of the same law firms that defended Grokster, Kazaa, and other P2P pirate defendants as well as some of the ISPs are now representing AI companies—and the AI companies are very often some, not all, but some of the same ones that started screwing us on DMCA, etc., for the last 25 years.  You’ll see familiar names all of whom have done their best to destroy the creative community for big, big bucks in litigation and lobbying billable hours while filling their pockets to overflowing. 

The legal cadre pioneered the ‘willful blindness’ defense and are now polishing it up for AI, hoping courts haven’t learned the lesson.  And judging…no pun intended…from some recent rulings, maybe they haven’t.

Why do they drive their clients into a position where they pose an existential threat to all creators?  Do they not understand that they are creating a vast community of humans that really, truly, hate their clients?  I think they do understand, but there is a corresponding hatred of the super square Silicon Valley types who hate “Hollywood” right back.

Because, you know, information wants to be free—unless they are selling it.  And your data is their new oil. They apply this “ethic” not just to data, but to everything: books, news, music, images, and voice. Copyright? A speed bump. Terms of service? A suggestion. Artist consent? Optional.  Writing a song is nothing compared to the complexities of Biggest Tech.

Why do they do this?  OCPD Much?

Because control over training data is strategic dominance and these people are the biggest control freaks that mankind has ever produced.  They exhibit persistent and inflexible patterns of behavior characterized by an excessive need to control people, environments, and outcomes, often associated with traits of obsessive-compulsive personality disorder.  

So empathy will get you nowhere with these people, although their narcissism allows them to believe that they are extremely empathetic.  Pathetic, yes, empathetic, not so much.  

Pay No Attention to that Pajama Boy Behind the Curtain

The driving force behind AI is very similar to the driving force behind the Internet.   If pajama boy can harvest the world’s intellectual property and use it to train his proprietary AI model, he now owns a simulation of the culture he is not otherwise part of, and not only can he monetize it without sharing profits or credit, he can deny profits and credit to the people who actually created it.

So just like the heyday of Pirate Bay, Grokster & Co.  (and Daniel Ek’s pirate incarnation) the goal isn’t innovation. The goal is control over language, imagery, and the markets that used to rely on human creators.  This should all sound familiar if you were around for the p2p era.

Why This Matters

Like p2p platforms, it’s just not believable that the AI companies do know what’s in their models.  They may build their chatbot interface so that the public can’t ask the chatbot to blow the whistle on the platform operator, but that doesn’t mean  the company can’t tell what they are training on.  These operators have to be able to know what’s in the training materials and manipulate that data daily.  

They fingerprint, deduplicate, and sanitize their datasets. How else can they avoid having multiple copies of books, for example, that would be a compute nightmare.  They store “embeddings” in a way that they can optimize their AI to use only the best copy of any particular book.  They control the pipeline.

It’s not about the model’s memory. It’s about the platform’s intent and awareness.

If they’re smart enough to remove illegal content and prioritize clean data, they’re smart enough to be held accountable.

We’re not living through the first digital content crisis — just the most powerful one yet. The legal defenses haven’t changed much. But the stakes — for copyright, competition, and consumer protection — are much higher now.

Courts, Congress, and the public should recognize this for what it is: a recycled defense strategy in service of unchecked AI power. Eventually Grokster ran into Grokster— and all these lawyers are praying that there won’t be an AI version of the Grokster case.